PG - 271

II Semester M.Sc. Degree Examination, June/July 2014 (NS) (2006 Scheme) MATHEMATICS

M-203 : Functional Analysis

Time: 3 Hours Max. Marks: 80

Instructions: 1) Answer any five questions. Choosing alteast two from each Part.

2) All questions carry equal marks.

PART – A

1.	a)	Define: i) Normed linear space ii) Banach space.	
		Give an example of a normed linear space which is not a Banach space.	4
	b)	Prove that a linear subspace of a Banach space is complete if and only if it is closed.	6
	c)	Define I _p space. Prove that I _p is a Banach space.	6
2.	a)	If M is a closed linear subspace of a normed linear space X, then prove that the quotient space X/M is a normed linear space. Further show that X/M is a Banach space if X is a Banach space.	10
	b)	Show that any two norms on a finite dimensional normed linear space are equivalent.	6
3.	a)	Show that a normed linear space is finite dimensional if and only if the closed unit ball is compact.	6
	b)	State and prove Hahn Banach theorem for the real care.	10
4.	a)	State and prove open Mapping theorem.	9
	b)	Show that a normed linear space is separable if its dual space is separable. Is the converse true? Justify.	7

PART-B

- 5. a) Define a Hilbert space. Prove that the inner product and norm in any Hilbert space H are continuous.
- 8

b) In any Hilbert space H, prove that

8

- i) $|\langle x, y \rangle| \leq ||x|| ||y||$,
- ii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in H$.
- 6. a) If $f \in H^*$, show that there exists a Unique vector y in H such that $f(x) = \langle x, y \rangle$ for all x in H.

8

- b) Show that every non-zero Hilbert space contains a complete orthonormal set.
 - 8
- 7. a) Let S_1 , S_2 be non-empty subsets of a Hilbert space H, then prove the following
 - i) $\{0\}^{\perp} = H \text{ and } H^{\perp} = \{0\}$ iii) $S_1 \subseteq S_2 \Rightarrow S_2^{\perp} \subseteq S_1^{\perp}$

8

b) Let H be a Hilbert space. Show $H = M \oplus M^{\perp}$.

8

- 8. a) Define self adjoint and normal operator on a Hilbert space H. Show that an operator T on H is
 - i) Self adjoint if and only if $\langle Tx, x \rangle$ is real for each $x \in H$,
 - ii) Normal if and only if $||T^*x|| = ||Tx||$ for each $x \in H$.

8

b) If P is a projection on a Hilbert space H, with range M and null space N, then prove that $M \perp N$ if and only if P is self adjoint and in this care $N = M^{\perp}$.

4

c) Prove that a closed linear subspace M of a Hilbert space H reduces an operator T if M is invariant under T and T*.

4